skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gutt, Jean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It is a long-standing conjecture that all symplectic capacities which are equal to the Gromov width for ellipsoids coincide on a class of convex domains in\mathbb{R}^{2n}. It is known that they coincide for monotone toric domains in all dimensions. In this paper, we study whether requiring a capacity to be equal to thekth Ekeland–Hofer capacity for all ellipsoids can characterize it on a class of domains. We prove that fork=n=2, this holds for convex toric domains, but not for all monotone toric domains. We also prove that, fork=n\ge 3, this does not hold even for convex toric domains. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  2. Abstract Chaidez and Edtmair have recently found the first examples of dynamically convex domains in $$\mathbb{R}^{4}$$ that are not symplectomorphic to convex domains, answering a long-standing open question. In this paper, we discover new examples of such domains without referring to Chaidez–Edtmair’s methods. We show a stronger result: that these domains are arbitrarily far from the set of convex domains in $$\mathbb{R}^{4}$$ with respect to the coarse symplectic Banach–Mazur distance. 
    more » « less